Generation of orientation tools for automated zebrafish screening assays using desktop 3D printing
نویسندگان
چکیده
BACKGROUND The zebrafish has been established as the main vertebrate model system for whole organism screening applications. However, the lack of consistent positioning of zebrafish embryos within wells of microtiter plates remains an obstacle for the comparative analysis of images acquired in automated screening assays. While technical solutions to the orientation problem exist, dissemination is often hindered by the lack of simple and inexpensive ways of distributing and duplicating tools. RESULTS Here, we provide a cost effective method for the production of 96-well plate compatible zebrafish orientation tools using a desktop 3D printer. The printed tools enable the positioning and orientation of zebrafish embryos within cavities formed in agarose. Their applicability is demonstrated by acquiring lateral and dorsal views of zebrafish embryos arrayed within microtiter plates using an automated screening microscope. This enables the consistent visualization of morphological phenotypes and reporter gene expression patterns. CONCLUSIONS The designs are refined versions of previously demonstrated devices with added functionality and strongly reduced production costs. All corresponding 3D models are freely available and digital design can be easily shared electronically. In combination with the increasingly widespread usage of 3D printers, this provides access to the developed tools to a wide range of zebrafish users. Finally, the design files can serve as templates for other additive and subtractive fabrication methods.
منابع مشابه
Safety and Efficacy of Casting During COVID-19 Pandemic: A Comparison of the Mechanical Properties of Polymers Used for 3D Printing to Conventional Materials Used for the Generation of Orthopaedic Orthoses
To reduce the risk of spread of the novel coronavirus (COVID-19), the emerging protocols are advising for less physicianpatientcontact, shortening the contact time, and keeping a safe distance. It is recommended that unnecessary castingbe avoided in the events that alternative methods can be applied such as in stable ankle fractures, and hindfoot/midfoot/forefoot injuries. Fib...
متن کاملAssessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays.
3D printing has emerged as a rapid and cost-efficient manufacturing technique to enable the fabrication of bespoke, complex prototypes. If the technology is to have a significant impact in biomedical applications, such as drug discovery and molecular diagnostics, the devices produced must be biologically compatible to enable their use with established reference assays and protocols. In this wor...
متن کاملProgramming Language Tools and Techniques for 3D Printing
We propose a research agenda to investigate programming language techniques for improving affordable, end-user desktop manufacturing processes such as 3D printing. Our goal is to adapt programming languages tools and extend the decades of research in industrial, high-end CAD/CAM in order to help make affordable desktop manufacturing processes more accurate, fast, reliable, and accessible to end...
متن کامل3D Automated Nuclear Morphometric Analysis Using Active Meshes
Recent advances in bioimaging have allowed to observe biological phenomena in three dimensions in a precise and automated fashion. However, the analysis of depth-stacks acquired in fluorescence microscopy constitutes a challenging task and motivates the development of robust methods. Automated computational schemes to process 3D multi-cell images from High Content Screening (HCS) experiments ar...
متن کاملLow-cost Method for Obtaining Medical Rapid Prototyping Using Desktop 3D printing: A Novel Technique for Mandibular Reconstruction Planning
BACKGROUND Three-dimensional (3D) printing is relatively a new technology with clinical applications, which enable us to create rapid accurate prototype of the selected anatomic region, making it possible to plan complex surgery and pre-bend hardware for individual surgical cases. This study aimed to express our experience with the use of medical rapid prototype (MRP) of the maxillofacial regio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2014